Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recently, there has been a surge in developing curricula and tools that integrate computing (C) into Science, Technology, Engineering, and Math (STEM) programs. These environments foster authentic problem-solving while facilitating students’ concurrent learning of STEM+C content. In our study, we analyzed students’ behaviors as they worked in pairs to create computational kinematics models of object motion. We derived a domain-specific metric from students’ collaborative dialogue that measured how they integrated science and computing concepts into their problem-solving tasks. Additionally, we computed social metrics such as equity and turn-taking based on the students’ dialogue. We identified and characterized students’ planning, enacting, monitoring, and reflecting behaviors as they worked together on their model construction tasks. This study in-vestigates the impact of students’ collaborative behaviors on their performance in STEM+C computational modeling tasks. By analyzing the relationships between group synergy, turn-taking, and equity measures with task performance, we provide insights into how these collaborative behaviors influence students’ ability to construct accurate models. Our findings underscore the importance of synergistic discourse for overall task success, particularly during the enactment, monitoring, and reflection phases. Conversely, variations in equity and turn-taking have a minimal impact on segment-level task performance.more » « lessFree, publicly-accessible full text available July 1, 2026
-
This paper explores the design of two types of pedagogical agents—teaching and peer—in a collaborative STEM+C learning environment, C2STEM, where high school students learn physics (kinematics) and computing by building computational models that simulate the motion of objects. Through in-depth case study interviews with teachers and students, we identify role-based features for these agents to support collaborative learning in open-ended STEM+C learning environments. We propose twelve design principles—four for teaching agents, four for peer agents, and four shared by both—contributing to foundational guidelines for developing agents that enhance collaborative learning through computational modeling.more » « lessFree, publicly-accessible full text available June 10, 2026
-
Embodied learning represents a natural and immersive approach to education, where the physical engagement of learners plays a critical role in how they perceive and internalize concepts. This allows students to actively embody and explore knowledge through interaction with their environment, significantly enhancing retention and understanding of complex subjects. However, researchers face significant challenges in exploring children's learning in these physically interactive spaces, particularly due to the complexity of tracking multiple students' movements and dynamic interactions in real-time. To address these challenges, this paper introduces a Double Diamond design thinking process for developing an AI-enhanced timeline aimed at assisting researchers in visualizing and analyzing interactions within embodied learning environments. We outline key considerations, challenges, and lessons learned in this user-centered design process. Our goal is to create a timeline that employs state-of-the-art AI techniques to help researchers interpret complex datasets, such as children's movements, gaze directions, and affective states during learning activities, thereby simplifying their tasks and augmenting the process of interaction analysis.more » « less
-
Grieff, S. (Ed.)Recently there has been increased development of curriculum and tools that integrate computing (C) into Science, Technology, Engineering, and Math (STEM) learning environments. These environments serve as a catalyst for authentic collaborative problem-solving (CPS) and help students synergistically learn STEM+C content. In this work, we analyzed students’ collaborative problem-solving behaviors as they worked in pairs to construct computational models in kinematics. We leveraged social measures, such as equity and turn-taking, along with a domain-specific measure that quantifies the synergistic interleaving of science and computing concepts in the students’ dialogue to gain a deeper understanding of the relationship between students’ collaborative behaviors and their ability to complete a STEM+C computational modeling task. Our results extend past findings identifying the importance of synergistic dialogue and suggest that while equitable discourse is important for overall task success, fluctuations in equity and turn-taking at the segment level may not have an impact on segment-level task performance. To better understand students’ segment-level behaviors, we identified and characterized groups’ planning, enacting, and reflection behaviors along with monitoring processes they employed to check their progress as they constructed their models. Leveraging Markov Chain (MC) analysis, we identified differences in high- and low-performing groups’ transitions between these phases of students’ activities. We then compared the synergistic, turn-taking, and equity measures for these groups for each one of the MC model states to gain a deeper understanding of how these collaboration behaviors relate to their computational modeling performance. We believe that characterizing differences in collaborative problem-solving behaviors allows us to gain a better understanding of the difficulties students face as they work on their computational modeling tasks.more » « less
An official website of the United States government

Full Text Available